“看似寻常最奇崛,成如容易却艰辛。” –王安石
正文
分析源码之前先来介绍一下ArrayMap的存储结构,ArrayMap数据的存储不同于HashMap和SparseArray,在上一篇Android SparseArray源码详解中我们讲到SparseArray是以纯数组的形式存储的,一个数组存储的是key值一个数组存储的是value值,今天我们分析的ArrayMap和SparseArray有点类似,他也是以纯数组的形式存储,不过不同的是他的一个数组存储的是Hash值另一个数组存储的是key和value,其中key和value是成对出现的,key存储在数组的偶数位上,value存储在数组的奇数位上,我们先来看其中的一个构造方法
ArrayMap
1
2
3
4
5
6
7
8
9
public ArrayMap(int capacity) {
if (capacity == 0) {
mHashes = ContainerHelpers.EMPTY_INTS;
mArray = ContainerHelpers.EMPTY_OBJECTS;
} else {
allocArrays(capacity);
}
mSize = 0;
}
当capacity不为0的时候调用allocArrays方法分配数组大小,在分析allocArrays源码之前,我们先来看一下freeArrays方法,
freeArrays
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
private static void freeArrays(final int[] hashes, final Object[] array, final int size) {
if (hashes.length == (BASE_SIZE*2)) {
synchronized (ArrayMap.class) {
if (mTwiceBaseCacheSize < CACHE_SIZE) {
array[0] = mTwiceBaseCache;
array[1] = hashes;
for (int i=(size<<1)-1; i>=2; i--) {
array[i] = null;
}
mTwiceBaseCache = array;
mTwiceBaseCacheSize++;
if (DEBUG) Log.d(TAG, "Storing 2x cache " + array
+ " now have " + mTwiceBaseCacheSize + " entries");
}
}
} else if (hashes.length == BASE_SIZE) {
synchronized (ArrayMap.class) {
if (mBaseCacheSize < CACHE_SIZE) {
array[0] = mBaseCache;
array[1] = hashes;
for (int i=(size<<1)-1; i>=2; i--) {
array[i] = null;
}
mBaseCache = array;
mBaseCacheSize++;
if (DEBUG) Log.d(TAG, "Storing 1x cache " + array
+ " now have " + mBaseCacheSize + " entries");
}
}
}
}
BASE_SIZE的值为4,ArrayMap对于hashes.length为4和8的两种情况会进行缓存,上面的两种情况下原理都是一样的,我们就用下面的一种情况进行分析,缓存的数量也不是无线大的,当大于等于10(CACHE_SIZE)的时候也就不再进行缓存了,缓存的原理就是让array数组的第一个位置保存之前缓存的mBaseCache,第二个位置保存当前的hashes数组,其他的全部置为空,下面我们再来看一下之前的allocArrays方法,
allocArrays
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
private void allocArrays(final int size) {
if (mHashes == EMPTY_IMMUTABLE_INTS) {
throw new UnsupportedOperationException("ArrayMap is immutable");
}
if (size == (BASE_SIZE*2)) {
…………………………
} else if (size == BASE_SIZE) {
synchronized (ArrayMap.class) {
if (mBaseCache != null) {
final Object[] array = mBaseCache;
mArray = array;
mBaseCache = (Object[])array[0];
mHashes = (int[])array[1];
array[0] = array[1] = null;
mBaseCacheSize--;
if (DEBUG) Log.d(TAG, "Retrieving 1x cache " + mHashes
+ " now have " + mBaseCacheSize + " entries");
return;
}
}
}
mHashes = new int[size];
mArray = new Object[size<<1];
}
如果分配的尺寸不为4或者8,就初始化,我们看到最下面两行mArray的大小是mHashes的两倍,这是因为mArray存储的是key和value两个值。如果分配的尺寸为4或者8,就判断之前对这两种情况是否进行了缓存,如果缓存过就从缓存中取,取出来的时候会把array的值置空,在上面的freeArrays方法中我们知道array的第一个位置和第二个位置保存的有值,其他的都置为空,在这里把array[0]和array[1]也置为了空,但是有一点奇葩的地方就是mHashes的值确保留了下来,无论是在freeArrays方法中还是在allocArrays方法中,都没有把他置为默认值。通过ArrayMap的源码发现,这里mHashes的值无论改不改变基本上都没有什么太大影响,因为put的时候如果存在就被替换了,但在indexOf的方法中如果存在还要在继续比较key的值,只有hash和key都一样才会返回。我们下面来看一下indexOf(Object key, int hash)这个方法,
indexOf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
int indexOf(Object key, int hash) {
final int N = mSize;
// Important fast case: if nothing is in here, nothing to look for.
if (N == 0) {
return ~0;
}
int index = ContainerHelpers.binarySearch(mHashes, N, hash);
// If the hash code wasn't found, then we have no entry for this key.
if (index < 0) {
return index;
}
// If the key at the returned index matches, that's what we want.
if (key.equals(mArray[index<<1])) {
return index;
}
// Search for a matching key after the index.
int end;
for (end = index + 1; end < N && mHashes[end] == hash; end++) {
if (key.equals(mArray[end << 1])) return end;
}
// Search for a matching key before the index.
for (int i = index - 1; i >= 0 && mHashes[i] == hash; i--) {
if (key.equals(mArray[i << 1])) return i;
}
// Key not found -- return negative value indicating where a
// new entry for this key should go. We use the end of the
// hash chain to reduce the number of array entries that will
// need to be copied when inserting.
return ~end;
}
这个方法很简单,就是根据二分法查找来确定hash值在数组中的位置,如果没找到就返回一个负数,注意下面还有两个循环,这是因为mHashes数组中的hash值不是唯一的,只有hash值相同并且key也相同才会返回所在的位置,否则就返回一个负数。下面就来看一下put(K key, V value)这个方法。
put
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
@Override
public V put(K key, V value) {
final int hash;
int index;
if (key == null) {
hash = 0;
index = indexOfNull();
} else {
hash = key.hashCode();
index = indexOf(key, hash);
}
//通过查找,如果找到就把原来的替换,
if (index >= 0) {
index = (index<<1) + 1;
final V old = (V)mArray[index];
mArray[index] = value;
return old;
}
//在上一篇《Android SparseArray源码详解》讲过,根据二分法查找,如果没有找到就会返回一个负数,这里进行取反
index = ~index;
//如果满了就扩容
if (mSize >= mHashes.length) {
//扩容的尺寸,三目运算符
final int n = mSize >= (BASE_SIZE*2) ? (mSize+(mSize>>1))
: (mSize >= BASE_SIZE ? (BASE_SIZE*2) : BASE_SIZE);
if (DEBUG) Log.d(TAG, "put: grow from " + mHashes.length + " to " + n);
final int[] ohashes = mHashes;
final Object[] oarray = mArray;
//扩容
allocArrays(n);
//如果原来有数据就把原来的数据拷贝到扩容后的数组中
if (mHashes.length > 0) {
if (DEBUG) Log.d(TAG, "put: copy 0-" + mSize + " to 0");
System.arraycopy(ohashes, 0, mHashes, 0, ohashes.length);
System.arraycopy(oarray, 0, mArray, 0, oarray.length);
}
freeArrays(ohashes, oarray, mSize);
}
//根据上面的二分法查找,如果index小于mSize,说明新的数据是插入到数组之间index位置,插入之前需要把后面的移位
if (index < mSize) {
if (DEBUG) Log.d(TAG, "put: move " + index + "-" + (mSize-index)
+ " to " + (index+1));
System.arraycopy(mHashes, index, mHashes, index + 1, mSize - index);
System.arraycopy(mArray, index << 1, mArray, (index + 1) << 1, (mSize - index) << 1);
}
//数据保存,mHashes只有hash值,mArray即保存key值又保存value值,
mHashes[index] = hash;
mArray[index<<1] = key;
mArray[(index<<1)+1] = value;
mSize++;
return null;
}
还有clear()方法和erase()方法,这两个区别就是clear()把所有的数据清空,并释放空间,erase()清空数据但没有释放空间,并且erase()只清mArray数据,mHashes数据并没有清空,这就是上面讲到的mHashes即使没清空也不会有影响,代码比较少就不在看了。在看一下和put类似的一个方法append(K key, V value)
append
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
* Special fast path for appending items to the end of the array without validation.
* The array must already be large enough to contain the item.
* @hide
*/
public void append(K key, V value) {
int index = mSize;
final int hash = key == null ? 0 : key.hashCode();
if (index >= mHashes.length) {
throw new IllegalStateException("Array is full");
}
if (index > 0 && mHashes[index-1] > hash) {
RuntimeException e = new RuntimeException("here");
e.fillInStackTrace();
Log.w(TAG, "New hash " + hash
+ " is before end of array hash " + mHashes[index-1]
+ " at index " + index + " key " + key, e);
put(key, value);
return;
}
mSize = index+1;
mHashes[index] = hash;
index <<= 1;
mArray[index] = key;
mArray[index+1] = value;
}
我们看注释这个方法是隐藏的,没有开放,因为这个方法不稳定,如果调用可能就会出现问题,看上面的注释,意思是说这个方法存储数据的时候没有验证,因为在最后存储的时候,是直接存进去的,这就会有一个问题,如果之前存过相同的key和value,再调用这个方法,很可能会再次存入,就可能会有两个key和value完全一样的,我个人认为如果把上面的if (index > 0 && mHashes[index-1] > hash)改为if (index > 0 && mHashes[index-1] >= hash)应该就没问题了,因为如果有相同的就调用put方法把原来的替换,不明白他为什么要这样写,下面再看一个方法validate()
validate
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/**
* The use of the {@link #append} function can result in invalid array maps, in particular
* an array map where the same key appears multiple times. This function verifies that
* the array map is valid, throwing IllegalArgumentException if a problem is found. The
* main use for this method is validating an array map after unpacking from an IPC, to
* protect against malicious callers.
* @hide
*/
public void validate() {
final int N = mSize;
if (N <= 1) {
// There can't be dups.
return;
}
int basehash = mHashes[0];
int basei = 0;
for (int i=1; i<N; i++) {
int hash = mHashes[i];
if (hash != basehash) {
basehash = hash;
basei = i;
continue;
}
// We are in a run of entries with the same hash code. Go backwards through
// the array to see if any keys are the same.
final Object cur = mArray[i<<1];
for (int j=i-1; j>=basei; j--) {
final Object prev = mArray[j<<1];
if (cur == prev) {
throw new IllegalArgumentException("Duplicate key in ArrayMap: " + cur);
}
if (cur != null && prev != null && cur.equals(prev)) {
throw new IllegalArgumentException("Duplicate key in ArrayMap: " + cur);
}
}
}
}
看上面的注释也是隐藏的,存储的时候可能会存在多个相同的key,这个方法就是用来验证的,这个方法很好理解,因为我们存储数据的时候是按照二分法查找然后存储的,如果hash值相同,那么存储的时候肯定是挨着的,在这里进行验证,对挨着相同hash值的数据进行key比较,如果key相同,则说明已经存在了,就会报异常。我们再来看最后一个方法
removeAt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
public V removeAt(int index) {
final Object old = mArray[(index << 1) + 1];
//如果小于等于1就全部清空
if (mSize <= 1) {
// Now empty.
if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to 0");
freeArrays(mHashes, mArray, mSize);
mHashes = EmptyArray.INT;
mArray = EmptyArray.OBJECT;
mSize = 0;
} else {
// 如果数组比较大,但使用的比较少,就会重新分配空间
if (mHashes.length > (BASE_SIZE*2) && mSize < mHashes.length/3) {
// Shrunk enough to reduce size of arrays. We don't allow it to
// shrink smaller than (BASE_SIZE*2) to avoid flapping between
// that and BASE_SIZE.
//重新计算空间,当大于8的时候会1.5倍增长
final int n = mSize > (BASE_SIZE*2) ? (mSize + (mSize>>1)) : (BASE_SIZE*2);
if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to " + n);
final int[] ohashes = mHashes;
final Object[] oarray = mArray;
// 重新分配空间
allocArrays(n);
mSize--;
if (index > 0) {
//如果删除的位置大于0,拷贝前半部分到新数组中
if (DEBUG) Log.d(TAG, "remove: copy from 0-" + index + " to 0");
System.arraycopy(ohashes, 0, mHashes, 0, index);
System.arraycopy(oarray, 0, mArray, 0, index << 1);
}
if (index < mSize) {
// 如果删除的位置小于mSize,把index位置以后的数据拷贝到新数组中
if (DEBUG) Log.d(TAG, "remove: copy from " + (index+1) + "-" + mSize
+ " to " + index);
System.arraycopy(ohashes, index + 1, mHashes, index, mSize - index);
System.arraycopy(oarray, (index + 1) << 1, mArray, index << 1,
(mSize - index) << 1);
}
} else {
mSize--;
if (index < mSize) {
//同上
if (DEBUG) Log.d(TAG, "remove: move " + (index+1) + "-" + mSize
+ " to " + index);
System.arraycopy(mHashes, index + 1, mHashes, index, mSize - index);
System.arraycopy(mArray, (index + 1) << 1, mArray, index << 1,
(mSize - index) << 1);
}
// 把移除的位置置空,上面的为什么没有置空,是因为上面的数据拷贝到一个新的数组中,而删除的就没有
//拷贝,这里要置空是因为这里数组没有扩容,还是在原来的数组操作,所以必须置空
mArray[mSize << 1] = null;
mArray[(mSize << 1) + 1] = null;
}
}
return (V)old;
}
剩下的方法都比较简单,这里就不在一一分析。