“在家不会迎宾客,出门方知少主人。”
正文
源码:\sources\android-25
ArrayDeque和ArrayList有区别也有相似的地方,他们都是数组存储数组,不同的是ArrayList存储是从数组位置的0开始的,而ArrayDeque有一个head和tail,head和tail可以指向数组的任何位置,head是指向数组的第一个元素,是有值的,tail是指向数组最后一个元素的下一个,是空的,如果tail大于head,那么数组大小就是tail-head,如果tail是小于head,那么数组大小为(head到数组长度+位置0到tail),代码不多,直接上代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
* Written by Josh Bloch of Google Inc. and released to the public domain,
* as explained at http://creativecommons.org/publicdomain/zero/1.0/.
*/
package java.util;
import java.io.Serializable;
import java.util.function.Consumer;
// BEGIN android-note
// removed link to collections framework docs
// END android-note
/**
* Resizable-array implementation of the {@link Deque} interface. Array
* deques have no capacity restrictions; they grow as necessary to support
* usage. They are not thread-safe; in the absence of external
* synchronization, they do not support concurrent access by multiple threads.
* Null elements are prohibited. This class is likely to be faster than
* {@link Stack} when used as a stack, and faster than {@link LinkedList}
* when used as a queue.
*
* <p>Most {@code ArrayDeque} operations run in amortized constant time.
* Exceptions include
* {@link #remove(Object) remove},
* {@link #removeFirstOccurrence removeFirstOccurrence},
* {@link #removeLastOccurrence removeLastOccurrence},
* {@link #contains contains},
* {@link #iterator iterator.remove()},
* and the bulk operations, all of which run in linear time.
*
* <p>The iterators returned by this class's {@link #iterator() iterator}
* method are <em>fail-fast</em>: If the deque is modified at any time after
* the iterator is created, in any way except through the iterator's own
* {@code remove} method, the iterator will generally throw a {@link
* ConcurrentModificationException}. Thus, in the face of concurrent
* modification, the iterator fails quickly and cleanly, rather than risking
* arbitrary, non-deterministic behavior at an undetermined time in the
* future.
*
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw {@code ConcurrentModificationException} on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: <i>the fail-fast behavior of iterators
* should be used only to detect bugs.</i>
*
* <p>This class and its iterator implement all of the
* <em>optional</em> methods of the {@link Collection} and {@link
* Iterator} interfaces.
*
* @author Josh Bloch and Doug Lea
* @since 1.6
* @param <E> the type of elements held in this deque
*/
public class ArrayDeque<E> extends AbstractCollection<E>
implements Deque<E>, Cloneable, Serializable
{
/**
* The array in which the elements of the deque are stored.
* The capacity of the deque is the length of this array, which is
* always a power of two. The array is never allowed to become
* full, except transiently within an addX method where it is
* resized (see doubleCapacity) immediately upon becoming full,
* thus avoiding head and tail wrapping around to equal each
* other. We also guarantee that all array cells not holding
* deque elements are always null.
*/
//存储的元素,并且elements的长度必须是2的n次方,这个和之前看到HashMap很相似,
//之前看的HashMap的数组长度也是2的n次方,因为要用到与运算,详细可以看
//http://blog.csdn.net/abcdef314159/article/details/51165630
transient Object[] elements; // non-private to simplify nested class access
/**
* The index of the element at the head of the deque (which is the
* element that would be removed by remove() or pop()); or an
* arbitrary number equal to tail if the deque is empty.
*/
//指向队列头,这个头并不是数组的第0个元素,如果这样head就没有意义了,这个从
//下面的addFirst(E e)方法也可以看出,如果当head等于0的时候,在添加到first,那么
//会添加到数组的最后,并且head也指向数组的最后,这个下面在分析
transient int head;
/**
* The index at which the next element would be added to the tail
* of the deque (via addLast(E), add(E), or push(E)).
*/
//指向队列尾的下一个空间,可以这样理解,head指向的是第一个元素,tail指向的是最后
//一个元素的下一个,指的是空的。
transient int tail;
/**
* The minimum capacity that we'll use for a newly created deque.
* Must be a power of 2.
*/
//最小存储空间,必须是二的n次方,
private static final int MIN_INITIAL_CAPACITY = 8;
// ****** Array allocation and resizing utilities ******
/**
* Allocates empty array to hold the given number of elements.
*
* @param numElements the number of elements to hold
*/
//分配空间,这个空间大小是比numElements大的最小的2的n次方,比如numElements
//是17,则初始化大小为32,因为2的4次是16小于17,2的5次是32,才大于17,如果传入
//的正好是2的n次方,那么初始化的空间大小的2的n+1次方,
private void allocateElements(int numElements) {
//根据numElements初始化空间
int initialCapacity = MIN_INITIAL_CAPACITY;
// Find the best power of two to hold elements.
// Tests "<=" because arrays aren't kept full.
//如果numElements小于8,直接初始化数组elements,否则,根据numElements
//的大小来计算数组的大小
if (numElements >= initialCapacity) {
initialCapacity = numElements;
//下面代码很简单,其实就是移位把最左边位的1填充到后面,计算的时候你完全可以把
//numElements第一个1后面的所有1都忽略,我举个例子,比如17,二进制是(总共32位,
//前面全是0)10001,就可以转化为(总共32位,前面全是0)11111,就相当于把最左边
//的1全部填充到后面,
initialCapacity |= (initialCapacity >>> 1);
initialCapacity |= (initialCapacity >>> 2);
initialCapacity |= (initialCapacity >>> 4);
initialCapacity |= (initialCapacity >>> 8);
initialCapacity |= (initialCapacity >>> 16);
initialCapacity++;//加1,达到2的n次方
// 越界了,太大了,
if (initialCapacity < 0) // Too many elements, must back off
initialCapacity >>>= 1; // Good luck allocating 2^30 elements
}
elements = new Object[initialCapacity];
}
/**
* Doubles the capacity of this deque. Call only when full, i.e.,
* when head and tail have wrapped around to become equal.
*/
//空间扩大一倍,仅仅当满的时候,这时候head和tail都会指向同一个元素
private void doubleCapacity() {
assert head == tail;//满了
int p = head;
int n = elements.length;//数组的长度
//关键是r不好理解,举个例子,在数组中,head不一定是之前0位置的,他可以指向其他位置,比如
//原来空间大小为16,head为13,也就是第14个元素(一数组是从0开始的),那么r就是16-13=3,也
//就是从head往后还有多少元素,待会copy的时候也是先从最后的r个元素开始
int r = n - p; // number of elements to the right of p
int newCapacity = n << 1;//扩大一倍
if (newCapacity < 0)
throw new IllegalStateException("Sorry, deque too big");
Object[] a = new Object[newCapacity];
System.arraycopy(elements, p, a, 0, r);//先copy后面的r个
System.arraycopy(elements, 0, a, r, p);//在copy前面的p个
elements = a;
//重新调整head和tail的值
head = 0;
tail = n;
}
/**
* Constructs an empty array deque with an initial capacity
* sufficient to hold 16 elements.
*/
public ArrayDeque() {
elements = new Object[16];//初始化大小,默认的为16
}
/**
* Constructs an empty array deque with an initial capacity
* sufficient to hold the specified number of elements.
*
* @param numElements lower bound on initial capacity of the deque
*/
public ArrayDeque(int numElements) {
allocateElements(numElements);// 分配空间
}
/**
* Constructs a deque containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator. (The first element returned by the collection's
* iterator becomes the first element, or <i>front</i> of the
* deque.)
*
* @param c the collection whose elements are to be placed into the deque
* @throws NullPointerException if the specified collection is null
*/
public ArrayDeque(Collection<? extends E> c) {
allocateElements(c.size());// 分配空间,然后添加
addAll(c);
}
// The main insertion and extraction methods are addFirst,
// addLast, pollFirst, pollLast. The other methods are defined in
// terms of these.
/**
* Inserts the specified element at the front of this deque.
*
* @param e the element to add
* @throws NullPointerException if the specified element is null
*/
public void addFirst(E e) {
if (e == null)
throw new NullPointerException();
//添加到head的前面,所以head-1,后面的与运算,不会出现数组越界,因为
//elements.length是2的n次方,这个可以参照之前的HashMap的分析
elements[head = (head - 1) & (elements.length - 1)] = e;
if (head == tail)//判断是否满了
doubleCapacity();
}
/**
* Inserts the specified element at the end of this deque.
*
* <p>This method is equivalent to {@link #add}.
*
* @param e the element to add
* @throws NullPointerException if the specified element is null
*/
public void addLast(E e) {
if (e == null)
throw new NullPointerException();
//添加到最后一个,这个方法和addFirst有很明显的不同,addFirst是添加的时候就要
//计算head的位置,因为原head位置是有值的,而addLast方法是存值之后在计算tail的,
//因为tail位置是没有存值的,他表示的是最右一个元素的下一个,是空,所以存值之后
//要计算tail的值
elements[tail] = e;
if ( (tail = (tail + 1) & (elements.length - 1)) == head)//判断是否满
doubleCapacity();
}
/**
* Inserts the specified element at the front of this deque.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Deque#offerFirst})
* @throws NullPointerException if the specified element is null
*/
public boolean offerFirst(E e) {//插入到第一个
addFirst(e);
return true;
}
/**
* Inserts the specified element at the end of this deque.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Deque#offerLast})
* @throws NullPointerException if the specified element is null
*/
public boolean offerLast(E e) {//插入到最后一个
addLast(e);
return true;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E removeFirst() {//删除第一个
E x = pollFirst();
if (x == null)
throw new NoSuchElementException();
return x;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E removeLast() {//删除最后一个
E x = pollLast();
if (x == null)
throw new NoSuchElementException();
return x;
}
public E pollFirst() {
final Object[] elements = this.elements;
final int h = head;
@SuppressWarnings("unchecked")
E result = (E) elements[h];
// Element is null if deque empty
if (result != null) {
elements[h] = null; // Must null out slot
// 删除第一个,这里的所有第一我们都认为是head所指的,不是数组的0位置,然后在
//计算head的值
head = (h + 1) & (elements.length - 1);
}
return result;
}
public E pollLast() {//删除最后一个
final Object[] elements = this.elements;
final int t = (tail - 1) & (elements.length - 1);
@SuppressWarnings("unchecked")
E result = (E) elements[t];
if (result != null) {
elements[t] = null;
tail = t;
}
return result;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E getFirst() {//返回第一个
@SuppressWarnings("unchecked")
E result = (E) elements[head];
if (result == null)
throw new NoSuchElementException();
return result;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E getLast() {// 返回最后一个
@SuppressWarnings("unchecked")
E result = (E) elements[(tail - 1) & (elements.length - 1)];
if (result == null)
throw new NoSuchElementException();
return result;
}
@SuppressWarnings("unchecked")
public E peekFirst() {
// elements[head] is null if deque empty
return (E) elements[head];
}
@SuppressWarnings("unchecked")
public E peekLast() {
return (E) elements[(tail - 1) & (elements.length - 1)];
}
}
removeFirstOccurrence
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
/**
* Removes the first occurrence of the specified element in this
* deque (when traversing the deque from head to tail).
* If the deque does not contain the element, it is unchanged.
* More formally, removes the first element {@code e} such that
* {@code o.equals(e)} (if such an element exists).
* Returns {@code true} if this deque contained the specified element
* (or equivalently, if this deque changed as a result of the call).
*
* @param o element to be removed from this deque, if present
* @return {@code true} if the deque contained the specified element
*/
public boolean removeFirstOccurrence(Object o) {//删除第一个出现的o
if (o != null) {
int mask = elements.length - 1;
int i = head;
for (Object x; (x = elements[i]) != null; i = (i + 1) & mask) {
if (o.equals(x)) {
delete(i);
return true;
}
}
}
return false;
}
/**
* Removes the last occurrence of the specified element in this
* deque (when traversing the deque from head to tail).
* If the deque does not contain the element, it is unchanged.
* More formally, removes the last element {@code e} such that
* {@code o.equals(e)} (if such an element exists).
* Returns {@code true} if this deque contained the specified element
* (or equivalently, if this deque changed as a result of the call).
*
* @param o element to be removed from this deque, if present
* @return {@code true} if the deque contained the specified element
*/
public boolean removeLastOccurrence(Object o) {//删除最后一个出现的o
if (o != null) {
int mask = elements.length - 1;
int i = (tail - 1) & mask;
for (Object x; (x = elements[i]) != null; i = (i - 1) & mask) {
if (o.equals(x)) {
delete(i);
return true;
}
}
}
return false;
}
Queue methods
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
// *** Queue methods ***
/**
* Inserts the specified element at the end of this deque.
*
* <p>This method is equivalent to {@link #addLast}.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Collection#add})
* @throws NullPointerException if the specified element is null
*/
public boolean add(E e) {//添加
addLast(e);
return true;
}
/**
* Inserts the specified element at the end of this deque.
*
* <p>This method is equivalent to {@link #offerLast}.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Queue#offer})
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {//插入到最后
return offerLast(e);
}
/**
* Retrieves and removes the head of the queue represented by this deque.
*
* This method differs from {@link #poll poll} only in that it throws an
* exception if this deque is empty.
*
* <p>This method is equivalent to {@link #removeFirst}.
*
* @return the head of the queue represented by this deque
* @throws NoSuchElementException {@inheritDoc}
*/
public E remove() {
return removeFirst();
}
/**
* Retrieves and removes the head of the queue represented by this deque
* (in other words, the first element of this deque), or returns
* {@code null} if this deque is empty.
*
* <p>This method is equivalent to {@link #pollFirst}.
*
* @return the head of the queue represented by this deque, or
* {@code null} if this deque is empty
*/
public E poll() {
return pollFirst();
}
/**
* Retrieves, but does not remove, the head of the queue represented by
* this deque. This method differs from {@link #peek peek} only in
* that it throws an exception if this deque is empty.
*
* <p>This method is equivalent to {@link #getFirst}.
*
* @return the head of the queue represented by this deque
* @throws NoSuchElementException {@inheritDoc}
*/
public E element() {
return getFirst();
}
/**
* Retrieves, but does not remove, the head of the queue represented by
* this deque, or returns {@code null} if this deque is empty.
*
* <p>This method is equivalent to {@link #peekFirst}.
*
* @return the head of the queue represented by this deque, or
* {@code null} if this deque is empty
*/
public E peek() {
return peekFirst();
}
// *** Stack methods ***
/**
* Pushes an element onto the stack represented by this deque. In other
* words, inserts the element at the front of this deque.
*
* <p>This method is equivalent to {@link #addFirst}.
*
* @param e the element to push
* @throws NullPointerException if the specified element is null
*/
public void push(E e) {
addFirst(e);
}
/**
* Pops an element from the stack represented by this deque. In other
* words, removes and returns the first element of this deque.
*
* <p>This method is equivalent to {@link #removeFirst()}.
*
* @return the element at the front of this deque (which is the top
* of the stack represented by this deque)
* @throws NoSuchElementException {@inheritDoc}
*/
public E pop() {
return removeFirst();
}
private void checkInvariants() {
assert elements[tail] == null;
assert head == tail ? elements[head] == null :
(elements[head] != null &&
elements[(tail - 1) & (elements.length - 1)] != null);
assert elements[(head - 1) & (elements.length - 1)] == null;
}
delete
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/**
* Removes the element at the specified position in the elements array,
* adjusting head and tail as necessary. This can result in motion of
* elements backwards or forwards in the array.
*
* <p>This method is called delete rather than remove to emphasize
* that its semantics differ from those of {@link List#remove(int)}.
*
* @return true if elements moved backwards
*/
//删除数组中下标为i的元素,之前所有的操作都是操作head和tail的,但这个不一样
//他会引起head或tail的改变,
boolean delete(int i) {
checkInvariants();
final Object[] elements = this.elements;
final int mask = elements.length - 1;
final int h = head;
final int t = tail;
final int front = (i - h) & mask;//i距离head的位置
final int back = (t - i) & mask;//i距离tail的位置
// Invariant: head <= i < tail mod circularity
if (front >= ((t - h) & mask))//保证i的位置元素是存在的
throw new ConcurrentModificationException();
// Optimize for least element motion
if (front < back) {//前面的少,从前往后挪,最后head要加1
if (h <= i) {
System.arraycopy(elements, h, elements, h + 1, front);
} else { // Wrap around
System.arraycopy(elements, 0, elements, 1, i);
elements[0] = elements[mask];
System.arraycopy(elements, h, elements, h + 1, mask - h);
}
elements[h] = null;
head = (h + 1) & mask;
return false;
} else {//后面少,从后往前挪,后面的tail要减1
if (i < t) { // Copy the null tail as well
System.arraycopy(elements, i + 1, elements, i, back);
tail = t - 1;
} else { // Wrap around
System.arraycopy(elements, i + 1, elements, i, mask - i);
elements[mask] = elements[0];
System.arraycopy(elements, 1, elements, 0, t);
tail = (t - 1) & mask;
}
return true;
}
}
Collection Methods
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
// *** Collection Methods ***
/**
* Returns the number of elements in this deque.
*
* @return the number of elements in this deque
*/
public int size() {//元素的size
return (tail - head) & (elements.length - 1);
}
/**
* Returns {@code true} if this deque contains no elements.
*
* @return {@code true} if this deque contains no elements
*/
//是否为空,在上面添加元素的时候也可能head==tail,当添加元素之后head==tail的时候
//就认为是满了,然后扩容,重新调整head和tail的值
public boolean isEmpty() {
return head == tail;
}
/**
* Returns an iterator over the elements in this deque. The elements
* will be ordered from first (head) to last (tail). This is the same
* order that elements would be dequeued (via successive calls to
* {@link #remove} or popped (via successive calls to {@link #pop}).
*
* @return an iterator over the elements in this deque
*/
public Iterator<E> iterator() {
return new DeqIterator();
}
public Iterator<E> descendingIterator() {//迭代器
return new DescendingIterator();
}
DeqIterator
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
private class DeqIterator implements Iterator<E> {
/**
* Index of element to be returned by subsequent call to next.
*/
private int cursor = head;
/**
* Tail recorded at construction (also in remove), to stop
* iterator and also to check for comodification.
*/
private int fence = tail;
/**
* Index of element returned by most recent call to next.
* Reset to -1 if element is deleted by a call to remove.
*/
private int lastRet = -1;
public boolean hasNext() {
return cursor != fence;
}
public E next() {
if (cursor == fence)
throw new NoSuchElementException();
@SuppressWarnings("unchecked")
E result = (E) elements[cursor];
// This check doesn't catch all possible comodifications,
// but does catch the ones that corrupt traversal
if (tail != fence || result == null)
throw new ConcurrentModificationException();
lastRet = cursor;
cursor = (cursor + 1) & (elements.length - 1);
return result;
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
if (delete(lastRet)) { // if left-shifted, undo increment in next()
cursor = (cursor - 1) & (elements.length - 1);
fence = tail;
}
lastRet = -1;
}
@Override
public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
Object[] a = elements;
int m = a.length - 1, f = fence, i = cursor;
cursor = f;
while (i != f) {
@SuppressWarnings("unchecked") E e = (E)a[i];
i = (i + 1) & m;
// Android-note: This uses a different heuristic for detecting
// concurrent modification exceptions than next(). As such, this is a less
// precise test.
if (e == null)
throw new ConcurrentModificationException();
action.accept(e);
}
}
}
DescendingIterator
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/**
* This class is nearly a mirror-image of DeqIterator, using tail
* instead of head for initial cursor, and head instead of tail
* for fence.
*/
private class DescendingIterator implements Iterator<E> {
private int cursor = tail;
private int fence = head;
private int lastRet = -1;
public boolean hasNext() {
return cursor != fence;
}
public E next() {
if (cursor == fence)
throw new NoSuchElementException();
cursor = (cursor - 1) & (elements.length - 1);
@SuppressWarnings("unchecked")
E result = (E) elements[cursor];
if (head != fence || result == null)
throw new ConcurrentModificationException();
lastRet = cursor;
return result;
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
if (!delete(lastRet)) {
cursor = (cursor + 1) & (elements.length - 1);
fence = head;
}
lastRet = -1;
}
}
contains
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/**
* Returns {@code true} if this deque contains the specified element.
* More formally, returns {@code true} if and only if this deque contains
* at least one element {@code e} such that {@code o.equals(e)}.
*
* @param o object to be checked for containment in this deque
* @return {@code true} if this deque contains the specified element
*/
public boolean contains(Object o) {
if (o != null) {
int mask = elements.length - 1;
int i = head;
for (Object x; (x = elements[i]) != null; i = (i + 1) & mask) {
if (o.equals(x))
return true;
}
}
return false;
}
remove
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/**
* Removes a single instance of the specified element from this deque.
* If the deque does not contain the element, it is unchanged.
* More formally, removes the first element {@code e} such that
* {@code o.equals(e)} (if such an element exists).
* Returns {@code true} if this deque contained the specified element
* (or equivalently, if this deque changed as a result of the call).
*
* <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
*
* @param o element to be removed from this deque, if present
* @return {@code true} if this deque contained the specified element
*/
public boolean remove(Object o) {
return removeFirstOccurrence(o);
}
/**
* Removes all of the elements from this deque.
* The deque will be empty after this call returns.
*/
public void clear() {// 清空
int h = head;
int t = tail;
if (h != t) { // clear all cells
head = tail = 0;
int i = h;
int mask = elements.length - 1;
do {
elements[i] = null;
i = (i + 1) & mask;
} while (i != t);
}
}
toArray
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/**
* Returns an array containing all of the elements in this deque
* in proper sequence (from first to last element).
*
* <p>The returned array will be "safe" in that no references to it are
* maintained by this deque. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
* <p>This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this deque
*/
public Object[] toArray() {//转化为数组
final int head = this.head;
final int tail = this.tail;
boolean wrap = (tail < head);//head有可能小于tail,尤其在addFirst方法中
int end = wrap ? tail + elements.length : tail;
//如果head小于tail,直接copy从head到tail即可,如果head大于tail,再从head到tail
//肯定不合适,tail需要加上数组的大小,但这里始终有一点困惑,tail + elements.length
// 可能会大于数组的长度,有可能出现数组越界异常,但是看了Arrays.copyOfRange的源码之后
//发现我多虑了
/**
public static <T,U> T[] copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType) {
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
T[] copy = ((Object)newType == (Object)Object[].class)
? (T[]) new Object[newLength]
: (T[]) Array.newInstance(newType.getComponentType(), newLength);
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));//这里是关键,所以不会出现越界异常
return copy;
}
*/
Object[] a = Arrays.copyOfRange(elements, head, end);
//如果wrap为真,那么上面copy的只是从head到数组的最后,那么数组前面到tail的那部分还没copy,所以这里copy
//前面的剩余部分
if (wrap)
System.arraycopy(elements, 0, a, elements.length - head, tail);
return a;
}
/**
* Returns an array containing all of the elements in this deque in
* proper sequence (from first to last element); the runtime type of the
* returned array is that of the specified array. If the deque fits in
* the specified array, it is returned therein. Otherwise, a new array
* is allocated with the runtime type of the specified array and the
* size of this deque.
*
* <p>If this deque fits in the specified array with room to spare
* (i.e., the array has more elements than this deque), the element in
* the array immediately following the end of the deque is set to
* {@code null}.
*
* <p>Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
* <p>Suppose {@code x} is a deque known to contain only strings.
* The following code can be used to dump the deque into a newly
* allocated array of {@code String}:
*
* <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
*
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the deque are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose
* @return an array containing all of the elements in this deque
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this deque
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {//把元素提取到数组中然后在返回
final int head = this.head;
final int tail = this.tail;
boolean wrap = (tail < head);//又是head在后面的情况
int size = (tail - head) + (wrap ? elements.length : 0);//大小
//copy数组的偏移量,因为有可能先提取后部分然后在提取前部分
int firstLeg = size - (wrap ? tail : 0);
int len = a.length;
if (size > len) {
a = (T[]) Arrays.copyOfRange(elements, head, head + size,
a.getClass());
} else {
System.arraycopy(elements, head, a, 0, firstLeg);
if (size < len)
a[size] = null;
}
if (wrap)
System.arraycopy(elements, 0, a, firstLeg, tail);
return a;
}
clone
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
// *** Object methods ***
/**
* Returns a copy of this deque.
*
* @return a copy of this deque
*/
public ArrayDeque<E> clone() {//克隆
try {
@SuppressWarnings("unchecked")
ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
result.elements = Arrays.copyOf(elements, elements.length);
return result;
} catch (CloneNotSupportedException e) {
throw new AssertionError();
}
}
private static final long serialVersionUID = 2340985798034038923L;
/**
* Saves this deque to a stream (that is, serializes it).
*
* @param s the stream
* @throws java.io.IOException if an I/O error occurs
* @serialData The current size ({@code int}) of the deque,
* followed by all of its elements (each an object reference) in
* first-to-last order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {//序列化写
s.defaultWriteObject();
// Write out size
s.writeInt(size());
// Write out elements in order.
int mask = elements.length - 1;
for (int i = head; i != tail; i = (i + 1) & mask)
s.writeObject(elements[i]);
}
readObject
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/**
* Reconstitutes this deque from a stream (that is, deserializes it).
* @param s the stream
* @throws ClassNotFoundException if the class of a serialized object
* could not be found
* @throws java.io.IOException if an I/O error occurs
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {//序列化读
s.defaultReadObject();
// Read in size and allocate array
int size = s.readInt();
allocateElements(size);
head = 0;
tail = size;
// Read in all elements in the proper order.
for (int i = 0; i < size; i++)
elements[i] = s.readObject();
}
DeqSpliterator
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/**
* Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
* and <em>fail-fast</em> {@link Spliterator} over the elements in this
* deque.
*
* <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
* {@link Spliterator#NONNULL}. Overriding implementations should document
* the reporting of additional characteristic values.
*
* @return a {@code Spliterator} over the elements in this deque
* @since 1.8
*/
public Spliterator<E> spliterator() {
return new DeqSpliterator<E>(this, -1, -1);
}
static final class DeqSpliterator<E> implements Spliterator<E> {
private final ArrayDeque<E> deq;
private int fence; // -1 until first use
private int index; // current index, modified on traverse/split
/** Creates new spliterator covering the given array and range. */
DeqSpliterator(ArrayDeque<E> deq, int origin, int fence) {
this.deq = deq;
this.index = origin;
this.fence = fence;
}
private int getFence() { // force initialization
int t;
if ((t = fence) < 0) {
t = fence = deq.tail;
index = deq.head;
}
return t;
}
public DeqSpliterator<E> trySplit() {
int t = getFence(), h = index, n = deq.elements.length;
if (h != t && ((h + 1) & (n - 1)) != t) {
if (h > t)
t += n;
int m = ((h + t) >>> 1) & (n - 1);
return new DeqSpliterator<E>(deq, h, index = m);
}
return null;
}
public void forEachRemaining(Consumer<? super E> consumer) {
if (consumer == null)
throw new NullPointerException();
Object[] a = deq.elements;
int m = a.length - 1, f = getFence(), i = index;
index = f;
while (i != f) {
@SuppressWarnings("unchecked") E e = (E)a[i];
i = (i + 1) & m;
if (e == null)
throw new ConcurrentModificationException();
consumer.accept(e);
}
}
public boolean tryAdvance(Consumer<? super E> consumer) {
if (consumer == null)
throw new NullPointerException();
Object[] a = deq.elements;
int m = a.length - 1, f = getFence(), i = index;
if (i != f) {
@SuppressWarnings("unchecked") E e = (E)a[i];
index = (i + 1) & m;
if (e == null)
throw new ConcurrentModificationException();
consumer.accept(e);
return true;
}
return false;
}
public long estimateSize() {
int n = getFence() - index;
if (n < 0)
n += deq.elements.length;
return (long) n;
}
@Override
public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED |
Spliterator.NONNULL | Spliterator.SUBSIZED;
}
}